Artificial Neural Network Based Nonlinear Model Predictive Control Strategy
نویسندگان
چکیده
منابع مشابه
Neural Network Based Model Predictive Control
Greg Martin Pavilion Technologies Austin, TX 78758 [email protected] Mark Gerules Pavilion Technologies Austin, TX 78758 [email protected] Model Predictive Control (MPC), a control algorithm which uses an optimizer to solve for the optimal control moves over a future time horizon based upon a model of the process, has become a standard control technique in the process industries over the past two ...
متن کاملNanofluid Thermal Conductivity Prediction Model Based on Artificial Neural Network
Heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. While the effectiveness of extending surfaces and redesigning heat exchange equipments to increase the heat transfer rate has reached a limit, many research activities have been carried out attempting to improve the thermal transport properties of the fluids by adding more thermally c...
متن کاملA Nonlinear Model Predictive Control Strategy Using Multiple Neural Network Models
Combining multiple neural networks appears to be a very promising approach for improving neural network generalization since it is very difficult, if not impossible, to develop a perfect single neural network. Therefore in this paper, a nonlinear model predictive control (NMPC) strategy using multiple neural networks is proposed. Instead of using a single neural network as a model, multiple neu...
متن کاملAdaptive Neural Network-Based Predictive Control for Nonlinear Dynamical Systems
In the paper, we propose a predictive control scheme using a neural network-based prediction model for nonlinear processes. To identify the system dynamics, we approximate the nonlinear function with an affine function of some of its arguments and construct a special type of prediction model using three-layered feedforward neural networks. Using some available inputoutput data pairs of the plan...
متن کاملExplicit Approximate Nonlinear Predictive Control Based on Neural Network Models
Nonlinear Model Predictive Control (NMPC) algorithms are based on various nonlinear models. Among others, an on-line optimization approach for NMPC based on neural network models can be found in the literature. Nevertheless, NMPC with on-line optimization is time consuming. On the other hand, an explicit solution to the NMPC problem would allow efficient on-line computations as well as verifiab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Technology Journal
سال: 2002
ISSN: 1812-5638,1812-5646
DOI: 10.3923/itj.2002.173.179